Mixed Poisson distribution

From HandWiki
mixed Poisson distribution
Notation Pois(λ)λπ(λ)
Parameters λ(0,)
Support k0
pmf 0λkk!eλπ(λ)dλ
Mean 0λπ(λ)dλ
Variance 0(λ+(λμπ)2)π(λ)dλ
Skewness (μπ+σπ2)3/2[0[(λμπ)3+3(λμπ)2]π(λ)dλ+μπ]
MGF Mπ(et1), with Mπ the MGF of π
CF Mπ(eit1)
PGF Mπ(z1)

A mixed Poisson distribution is a univariate discrete probability distribution in stochastics. It results from assuming that the conditional distribution of a random variable, given the value of the rate parameter, is a Poisson distribution, and that the rate parameter itself is considered as a random variable. Hence it is a special case of a compound probability distribution. Mixed Poisson distributions can be found in actuarial mathematics as a general approach for the distribution of the number of claims and is also examined as an epidemiological model.[1] It should not be confused with compound Poisson distribution or compound Poisson process.[2]

Definition

A random variable X satisfies the mixed Poisson distribution with density π(λ) if it has the probability distribution[3]

P(X=k)=0λkk!eλπ(λ)dλ.

If we denote the probabilities of the Poisson distribution by qλ(k), then

P(X=k)=0qλ(k)π(λ)dλ.

Properties

In the following let μπ=0λπ(λ)dλ be the expected value of the density π(λ) and σπ2=0(λμπ)2π(λ)dλ be the variance of the density.

Expected value

The expected value of the mixed Poisson distribution is

E(X)=μπ.

Variance

For the variance one gets[3]

Var(X)=μπ+σπ2.

Skewness

The skewness can be represented as

v(X)=(μπ+σπ2)3/2[0(λμπ)3π(λ)dλ+μπ].

Characteristic function

The characteristic function has the form

φX(s)=Mπ(eis1).

Where Mπ is the moment generating function of the density.

Probability generating function

For the probability generating function, one obtains[3]

mX(s)=Mπ(s1).

Moment-generating function

The moment-generating function of the mixed Poisson distribution is

MX(s)=Mπ(es1).

Examples

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a gamma distribution yields a negative binomial distribution.[3]

Theorem — Compounding a Poisson distribution with rate parameter distributed according to a exponential distribution yields a geometric distribution.

Table of mixed Poisson distributions

mixing distribution mixed Poisson distribution[4]
gamma negative binomial
exponential geometric
inverse Gaussian Sichel
Poisson Neyman
generalized inverse Gaussian Poisson-generalized inverse Gaussian
generalized gamma Poisson-generalized gamma
generalized Pareto Poisson-generalized Pareto
inverse-gamma Poisson-inverse gamma
log-normal Poisson-log-normal
Lomax Poisson–Lomax
Pareto Poisson–Pareto
Pearson’s family of distributions Poisson–Pearson family
truncated normal Poisson-truncated normal
uniform Poisson-uniform
shifted gamma Delaporte
beta with specific parameter values Yule

Literature

  • Jan Grandell: Mixed Poisson Processes. Chapman & Hall, London 1997, ISBN 0-412-78700-8 .
  • Tom Britton: Stochastic Epidemic Models with Inference. Springer, 2019, doi:10.1007/978-3-030-30900-8

References

  1. Willmot, Gordon E.; Lin, X. Sheldon (2001), "Mixed Poisson distributions", Lundberg Approximations for Compound Distributions with Insurance Applications, Lecture Notes in Statistics (New York, NY: Springer New York) 156: pp. 37–49, doi:10.1007/978-1-4613-0111-0_3, ISBN 978-0-387-95135-5, http://link.springer.com/10.1007/978-1-4613-0111-0_3, retrieved 2022-07-08 
  2. Willmot, Gord (1986). "Mixed Compound Poisson Distributions" (in en). ASTIN Bulletin 16 (S1): S59–S79. doi:10.1017/S051503610001165X. ISSN 0515-0361. 
  3. 3.0 3.1 3.2 3.3 Willmot, Gord (2014-08-29). "Mixed Compound Poisson Distributions". Astin Bulletin 16: 5–7. doi:10.1017/S051503610001165X. 
  4. Karlis, Dimitris; Xekalaki, Evdokia (2005). "Mixed Poisson Distributions". International Statistical Review 73 (1): 35–58. doi:10.1111/j.1751-5823.2005.tb00250.x. ISSN 0306-7734. https://www.jstor.org/stable/25472639.